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Introduction: A good but useless idea

 Created forecast for the occurrence of TTL cirrus for winter
2013 Dryden deployment

* Interesting results but targeting coldest temperatures in the
region was more reliable

Do we need parcel histories to forecast clouds?
What do cloud fields tell us about dynamical interactions?



Focus on information content

* Predicting cloud occurrence depends on the ‘cloud
information content’ of predictors

How much cloud information content is contained in local v
historical thermal and moisture fields?



We analyze dynamical circulations through predictions of
thin cloud distributions near the tropical tropopause
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Binned CALIPSO
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Calculate TTL cirrus ‘probability’ from CALIPSO observations

— 7 winters (J-F for 2007-2013) and 7 summers (J-A for 2006-2012)

— Look for thin clouds in the height range: Az = 15.2-17 km (~100-125 mb)

— Combine observations into 2° x 2° x 6 hr bins

— Thin clouds have t<0.3

— Probability = # of CALIPSO profiles with thin clouds in Az /# of profiles
Run 20 (30 d) back trajectories from each bin center — evenly spaced in
altitude
Use 4 predictors: Ty, q,0, 6T=T,—T,_.,80=q, i/ Qo cor
Gather layer-average statistics for prediction model
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The method is stable out to 9 orders
Meaningful values are obtained within ~6 orders
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For winter, the nonlinear dependence of
clouds on temperature is important
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For summer distributions the Lagrangian cold point is important
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Cloud prediction errors C-C(T,, 6T, )
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0.490

0.420

Tropical E. Atlantic
0350 stands out as
0280 anomalous

0.210
0.140

0.070

0.490

O_D 0.420

0.350

Asian monsoon
region stands out
as anomalous

] 0.280
S o210
] 0.140

—0.070

] 1
240 300 360



0.8
0.7

0.6
05
04
03
0.2

0.1
0.0

The dynamics involved with the formation of TTL cirrus in
the west Pacific and southern Asia are fundamentally different
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Conclusions

Local fields — particularly relative humidity - are good
predictors of thin cirrus distributions near the tropical

tropopause
— As they should be

Lagrangian cold and dry points are also good predictors
— There is shared information among local and historical fields

The relative information content within different fields can be
analyzed to reveal important dynamical interactions



